Chapter 6

Curves and Surfaces

In Chapter 2 a plane is defined as the zero set of a linear function in R3. It is expected
a surface is the zero set of a differentiable function in R™. To motivate, graphs and their
tangent planes are discussed in Section 6.1. The definition of a surface is defined and
shown to be the zero set of a differentiable function whenever it has non-vanishing gradient
in Section 6.2. A space curve is defined as the common zero set of two differentiable
functions with linearly independent gradients in Section 6.3. The general case concerning
common zero sets of finitely many differentiable functions in R™ is described by the Implicit
Function Theorem in Section 6.4. In Section 6.5 the Inverse Function Theorem which gives
a criterion for the existence of a local inverse to a differentiable map is present.

6.1 Graphs as Surfaces

Everybody is likely to know what a surface is and recognize it whenever they see one.
However, to make it precise in mathematics we need a definition. One must be careful
when it comes to a definition. Here we start with a special class of geometric objects
which should be called surfaces no matter what the definition would be.

Let ¢ be a continuous function defined in an open set G in R%. Everybody agrees that
its graph

S ={(z,y,0(x,y): (v,y) € G} CR?,

is a surface. This surface may be called a differentiable surface when its defining function
is differentiable. We can talk about the tangent plane of a differentiable surface. Let
p = (x,y,p(z,y)) be a point on such a surface 3. We define its tangent vector at p first.
The idea is to look at an arbitrary regular parametric curve v : (—a,a) — R? passing
through (z,y) at t = 0 in R2. Tt lifts to a parametric curve c(t) = (y(t), p(y(t))) on X
passing through (v(0), ¢(7(0))) = p. Its velocity vector ¢/(0) is called a tangent vector
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2 CHAPTER 6. CURVES AND SURFACES

of ¥ at p. Geometrically it is evident that it is tangential to X at p. The tangent plane
of 3 at p is the collection of all these tangent vectors. In other words, we set

LY ={d(0): ct) = (v(1),p(v()},

where +’s range over all regular parametric curves described above. The definition is
messy at first sight. The following theorem shows that it could be described in a very
simple manner.

Theorem 6.1. Setting as above, 1,3 is the vector space spanned by the vectors

(170790$(x7y)> and (07 1,(,03/(1',]/)) .

Furthermore, (—¢z, —@y, 1) points in the normal direction.

A non-zero vector is said to point to the normal direction (or simply a normal vector)
at a point on a surface if it is perpendicular to the tangent plane of the surface at this
point.

Proof. We first show that (1,0, ¢.(z,y)) is a tangent vector. To this end we choose the
parametric curve to be the straight line [(¢) = (x,y) +¢(1,0). Then I'(0) = (1,0) and, by
the Chain Rule,

C/(O) = (1707V§0(1‘7y> ) (170)) = (17079Dac(x7y)) S TPZ :

Similarly we can show that (0,1, ¢,(z,y)) is also a tangent vector. Now, given any curve

Y(t) = (2(t),y(1)), (2(0),y(0)) = (x,y), and c(t) = (x(t), y(t), p(z(t), y(1))),

d(0) = (2'(0),4(0), pa(x,y)x'(0) + @, (z,4)y'(0))
2'(0)(1,0, v.(x,y)) +4(0)(0, 1, 0y (z,)) ,

which shows that every tangent vector can be expressed as the linear combination of
(1,0, 0.(z,y)) and (0,1, ¢,(x,y)). It follows that all tangent vectors form a subspace in
R3 spanned by these two obviously linearly independent tangent vectors. Now, observing
that

<_90xa —Py, 1) : (1,0, 9036) =0, (—9093; — Py 1) : (07 1, pr) =0,

we see that (—V, 1) points to the normal direction at p.
]

Example 6.1. Find the tangent plane and the normal direction of the surface defined by
the equation zy? — xz +y = 0 at (1,2,6). We express this equation as a graph

zy® 4y
Z:
i

)
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which passes the point (1,2,6). From

0z Y 0z  2xy+1

or  x2’ Oy z
we get

0z 0z

—(1,2) = -2 —(1,2)=5.

ax(7) ) ay(7)

Therefore, the tangent plane of the surface at (1,2,6) is spanned by the vectors (1,0, z,)
and (0,1, z,) at (1,2,6), that is,

(1707_2) ) (07175) )

and the vector (—=Vz,1) = (2,—5,1) points in the normal direction at (1,1,2). The
tangent plane is given by

(2,-5,1)- ((z,y,2) — (1,2,6)) =0, ie, 2x—5by+z+2=0.

6.2 Level Sets as Surfaces

Consider a function f defined in some open set of R*. We would like to examine the set
{(z,y,2) : f(x,y,z) = ¢}, that is, the level set of this function at c. By replacing the
function f by f — ¢, it is without loss of generality to assume c is equal to 0. In view
of this, in the following discussion we usually assume ¢ = 0. Just like the level sets of
linear equations define planes and those of quadratic equations define quadric surfaces, we
would like to study what geometric object that is associated to the level set of a general
differentiable function. Let us start with an example.

Example 6.2. Study the zero sets of the following functions.

(a) z—a2?+y3—1=0,
(b) zyz—4=0,

(c) *+y*+22-1=0,

(d) x+2y+ ze"vH= =0

)
)
)
)

The equation in (a) can be written as z = 22 — y3 + 1, so it is the graph of the function
o(z,y) = 2> — y> + 1 over R2. It should be a surface according to our discussion in the
previous section. For (b), we see that no x,y or z can be 0, so it is the graph of the
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function f(z,y) = 4/xy over the open set {(z,y) : z,y # 0}. Of course, we may use the
other two variables as the independent ones. For instance, the set can also be described
as the graph of ¢g(y,z) = 1/yz over the open set {(y,z) : y,z # 0}. Now (c) describes
the unit sphere. By writing the equation as

z=y1—a2—9y?, orz=—\/1—2a2—9y?,

the unit sphere can be described as the union of the graphs of two functions over the
closed unit disk {(z,y) : 2* + y* < 1}. Finally, the equation in (d) is so messy that it
is not clear how to express one variable in terms of the other two, hence we are not sure
whether it is surface or not.

From these examples, we see that the level sets defined by an equation can be a graph
over the entire plane as in (a), over some open set as in (b), expressed as the union of more
than one graphs as in (c), or too messy to describe as in (d). In any case, they hint at how
a surface should be defined, namely, a surface should be an subset of R? that looks like a
graph locally. To be precise let us fix some notations. For p = (z,v, 2z), denote C,(p) or
simply C' a cube centered at p with side 2a, that is, (x—a, z+a) X (y—a, y+a) x (z—a, z+a)
and let Cyy = (v — a,x + a) X (y — a,y + a) be its projection on the zy-plane. Similarly
we define C, and C,,. A subset X of R? is a surface if, for every point p € 3, at least
one of the following cases holds:

(a) there exists a cube C centered at p and a function ¢ from C,y, to (2 — a, z + a) such
that

YNC = {(z,y,¢(z,9)) : (2,y) € Cuy},

or

(b) there exists a cube C centered at p and a function ¢ from C,, to (y — a,y + a) such
that
YNC ={(z,¢(x,2),2): (x,2) € Cpi},

or

(c) there exists a cube C' centered at p and a function n from Cy, to (z — a,z + a) such
that

ENC={(ny,2)y,2): (y,2) € Cp:}.

It is called a differentiable surface if the functions ¢, v, n can be chosen to be dif-
ferentiable. It is called a smooth surface if they are smooth, that is, infinitely many
times differentiable.

Example 6.3. Example 6.2 (a) is graph over the xy-plane, so case (a) is satisfied for
an arbitrary cube on the graph. Next the unit sphere is also a surface according to this
definition. Near the point (0,0,1) case (a) holds by taking ¢(z,y) = (1 — 2% — y?)1/2.
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However, at (1,0,0) we need to consider case (b) by taking v(y, z) = (1 — 3> — 22)1/2.

Near (1,1,1)/4/3, all cases hold and the sphere could be described locally by

z=V1-a?—y*, y=vV1l-2?-2*, orz=1-y>—2%.

The following fundamental result gives a simple criterion to test when the zero set of
a differentiable function forms a differentiable surface.

Theorem 6.2. Let f be differentiable in the open set G in R® and X its zero set. Suppose
p = (20,%0,20) € G satisfies f(p) = 0 and Vf(p) # (0,0,0). Then there is a cube C
centered at p such that

(a) If f.(p) # 0, there exists a function ¢ from Cyy to C satisfying o(xo,yo) = 20 such
that

YN0 ={(z,y,p(x,y): (v,y) € Coy},

(b) If f.(p) # 0, there exists a function n from Cy, to C satisfying n(yo, z0) = xo such
that

D N C = {(n(ya'Z)?va) : (x7y) S C?!Z}’

(c) If fy,(p) # 0, there exists a function ¢ from C,, to C satisfying 1 (xo, 20) = yo such
that
SNC={(x,¥(x,2),2): (x,2) € Cp}.

Corollary 6.3. Let f be differentiable in the open G in R and ¢ € R. Suppose that
L=A(z,y,2): fz,y,2) =c,V[(z,y,2)#(0,0,0)}

1s non-empty. Then X is a differentiable surface.

Proof. Apply the Theorem 6.2 to the function f.(x,y,2) = f(x,y,2) — ¢ and note that
Vf.=Vf.
0

Example 6.4. Looking at Example 6.2 (¢) above, the gradient of the unit sphere is given
by 2(z,y, z) which never vanishes on z2+y?+2% = 1. By this corollary it is a differentiable
surface. At (0,0,1) the gradient is (0,0, 2). Theorem 6.2 asserts that it can be described
as a function ¢(z,y) near this point. In fact the function is given by

ox,y) =v1—2%—y%.

On the other hand, it cannot be represented as graphs of functions in (z,x) or (y, z).



6 CHAPTER 6. CURVES AND SURFACES

Example 6.5. Now, let us examine Example 6.2 (d) by letting f(x,y,z) = = + 2y +
ze™Vt g0 (d) is its zero set. We compute

Vi(z,y,2) = (14 2"V 2 4 2e"TVF2 TV 4 e tvt2)

By simply looking at the first two components of the gradient, V f never vanishes. By
the corollary x + 2y + ze*T¥** = ( defines a differentiable surface despite we cannot solve
this equation explicitly. It demonstrates the power of this criterion.

Example 6.6. Theorem 6.2 does not necessarily hold when the gradient vanishes. For
instance, {(z,y,2) : ®+y?+ z? = 0} which consists of a single point {(0,0,0)} cannot
be a surface. Here we have Vf(0,0,0) = (0,0,0). Similarly, {(z,y,2) : 2%+ y* = 0} is
the z-axis which is a straight line not a surface. We have V£(0,0, z) = (0,0,0) at every
point on the z-axis.

Example 6.7. Let us look at {(z,y,2) : (z —y+ 2 —1)*> =0} . On one hand, this set is
the same as {(x,y,2) : © —y+ 2z — 1= 0}, so it is a surface (in fact, a plane). On the
other hand, Vg = 2(x —y+2—1),2(x —y+2—1)(—1),2(z —y + 1)) identically vanishes
on the set. This example shows that non-vanishing of the gradient is a sufficient but not
a necessary condition for a local graph.

After knowing that f(x,y,z) = 0 defines z as a function of x and y, that is, z =
o(z,y), we may use the technique of implicit differentiation to find the derivatives of
¢. Usually people do not introduce new notation. Imagining z now a function of (z,y),
we differentiate the equation f(z,y,z) = 0 by the Chain Rule:

f$+fzzx:O7 fy+fzzyzo7

SO

F et

Zx
By further differentiating,
f:r:a: + 2fz:czx + fzzzi + fzzmc = 07 fxy + faczzy + .fzyzx + fzzzxzy + fzzxy =0 >

fyz + fyzzx + fzxzy + fzzzxzy + fzzya: = Oa fyy + 2fz,(zzy + fzzZZ + fzzyy =0.

Thus 2,4, 22y, and z,, can be expressed in terms of z,, 2, and the first and second deriva-
tives of f. All higher order partial derivatives of z can be obtained by differentiating the
resulting equations in a recursive way. In practise, no one would memorize these formulas.
One just goes ahead to differentiate the equation many times.
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Example 6.8. Consider the equation
4 —az—2=0.
Find the derivative of z as a function of z,y at the point (0,2, —1). We have
Vf=Q2z—-2-1,2y,2z —x) ,

so Vf(0,2,—1) = (0,4, —2) is non-zero. According to Theorem 6.2, the z-component can
be represented as a function ¢(x,y). We differentiate the equation in x and y respectively

to get

0 0 0 0
2x—|—22—z—z—x—z—120, 2y+2z—z—x—Z:0.
Ox Ox

We can further express it as

0z 1-2x+2z2 0z 2y

dr x+2z Oy z—2z°

Since there is no explicit expression of z in terms of x and y, this is the farthest we could
reach. Evaluating at (0,2, —1), we get

0z 0z

Higher order derivatives can also be found by implicit differentiation. For instance, to
determine 9%z/0z2(0,2), we differentiate

2x+(2z+x)%—z—1:0,

once more to get

0z 0z 0Oz %z 0Oz

Plugging in (0,2, —1) and z, = 0, we get z,, = 1 at (0,2).

One may also obtain the second derivatives by differentiating the expression of z, and
2, listed above, but implicit differentiation is usually more efficient.

We will define the tangent plane of ¥ at p to be the tangent plane of the local graph
representation. Since there could be more than one representations, it is not clear whether
the tangent planes found from different representation are the same. The following theo-
rem not only gives a positive answer to this question but also yield a simple description
of the tangent plane.
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Theorem 6.4. Let f be differentiable in some open set G in R®. Suppose that V f(p) #
(0,0,0) at some p € G. Then it is normal to the tangent plane of the level set passing p.
As a result, the tangent plane of {(z,y,2): f(z,y,2) = f(p)} is given by

Vi) - ((z,y,2) —p) =0

For clarity the tangent plane of ¥ = {(z,y,2) : f(z,y,z) = 0} at p is defined to be
the hyperplane

7,5 ={(z,y,2): Vf(p)-((x,y,2) —p) =0}.

Proof. Without loss of generality assume f,(p) # 0. By Theorem 6.2 for some small
cube C, the set {(z,y,z) : f(x,y,2) = ¢} NC, ¢ = f(p), coincides with the graph
{(z,y,0(z,y)) : (x,y) € Cyy} for some p. We have f(z,y,p(x,y)) = c. Taking partial
derivatives of this relation,

0 0 0
(1,0,6) V) = 5 + L) 22w =0,

and of 0f 8
B R N\ -

so V f is perpendicular to the tangent plane of the level surface at p.

<07 17 (Py) ' Vf(p)

]

In R" a hypersurface is defined as a surface in R® where now the cases (a), (b)
and (c) have to be replaced by m-many cases. Note that it is called a curve when
n = 2 and a surface when n = 3. With these definitions, analogs of Theorem 6.2,
Corollary 6.3 and Theorem 6.4 hold, where now the tangent hyperplane is defined as
{z €R": Vf(p) - (x—p)=0}.Inparticular, the level set {z € G : f(z) =c}, G C R,
defines a differentiable hypersurface near a point p if f is differentiable with non-zero gra-
dient at p.

6.3 Space Curves

In Section 2.3 we defined the straight line as the intersection of two planes or the zero
set of a system of two linear equations. Now we would like to describe a curve as the
common zero set of a system of two differentiable functions. Parallel to what has been
done for surfaces, we first define what a curve is.

A subset T' of R? is a curve if, for every point p = (z,y,2) € I, at least one of the
following cases holds:
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(a) there exists a cube C' centered at p and a function v from (z —a,z +a) to (y —a,y +
a) X (z — a, z + a) such that

INC={t~t): te(x—azxz+a)},

(b) there exists a cube C' centered at p and a function § from (y —a,y+a) to (z —a,z +
a) X (z — a, z+ a) such that

INC={(Bt),t,5(t): t€(y—ay+a)l,

(c) there exists a cube C' centered at p and a function 7 from (z — a,z +a) to (x —a,z +
a) X (y —a,y + a) such that

'nC=A{(r(t),t): te(z—a,z+a) }.
It is called a differentiable curve (resp. smooth curve) if the functions v, 3,7
can be chosen to be differentiable (resp. smooth). From this definition we see that a

differentiable curve is the image of a regular parametric curve. For instance, in (a) the
parametric curve is given by

1) = (A1), te(r—azr+ta),

so [3(1)] = V1 +772(t) +72(t) > 0.

To formulate our analog of Theorem 6.2 for curves, for any two vectors (aq, as, az) and
(b1, by, b3), we form the matrix

by by b3

and use M; to denote the 2 x 2-submatrix obtained by removing the j-column of M.
When these two vectors are linearly independent, M has rank 2, so at least one of My, M,
and M3 is non-singular. In the following theorem M stands for

|:fa: Ty fz:|
9r Gy Gz]

M = {CM a2 aa]

Theorem 6.5. Let f and g be differentiable in the open set G in R3. Suppose p =
(%0, Yo, 20) satisfies f(p) =0, g(p) =0 and V f(p), Vg(p) are linearly independent. There
1s a cube C' centered at p such that

(a) If My is non-singular at p, there exists a function v from (xg — a,x¢ + a) to (yo —
a,yo + a) X (20 — a, 2o + a) satisfying v(zo) = (Yo, 20) such that

{(@y,2): fla,y,2) =0, g(z,y,2) =0} NC = {(z,7(x)) : € (20—a,x0+a)},
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(b) If My is non-singular at p, there exists a function 8 satisfying B(yo) = (o, 20) from
(Yo — a,yo + a) to (xo — a,xo + a) X (z0 — a, 2o + a) such that

{($,y, Z) : f(xvyv Z) = 07 g(a:,y,z) = O}QC = {(51(y)7y752(y)) Ly € (yﬂ_avy0+a) }7

(c¢) If Ms is non-singular at p, there exists a function T satisfying 7(z0) = (xo,%0) from
(20 —a,zp +a) to (vog— a, 0+ a) X (20 — a, zo + a) such that

{(x,y, Z) : f<x>ya Z) = 07 g(xaya Z) = 0} ne = {(T<Z)7Z) Dz E (ZO —Q,Zo+a) }

Corollary 6.6. Let f and g be differentiable in the open set G in R® and c,d € R.
Suppose that

L={p: fp)=c¢c, glp)=d, V[ and Vg are linearly independent at p}

1s non-empty. Then T" is a differentiable curve.

Example 6.9. Consider
r—y+2z =0.
Denote the first function by f and the second by g. Their gradients are given respectively
by
VfZQ(J},y,Z) ) Vg: (17_172) :
One can check that they are always linearly independent so Theorem 6.5 can be applied

to every point on the intersection. By Corollary 6.6 it is a differentiable curve. Let us
consider the point p = (1,1,0)/v/2 and determine its tangent line. We have

|22 2y 2z
v= 7 8]

At the point (1,1,0)/4/2 it is equal to

[ﬂﬁok

1 -1 2

whose 2 x 2-submatrices are non-singular. Therefore, near p the curve can be parametrized
by either one of the x,y or z variables. Assuming that it is parametrized by x, we could
write y(z) simply by (y(x), z(x)). We differentiate both f = 0,9 = 0 to get

2 + 2yy, + 22z, =0
1=y, + 22, =0.
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Plugging in (x,y, 2) = (1,1,0)/v/2, we solve this system to find that 3, = —1,2, = —1
at (1,1,0)/v/2, so the tangent vector of the curve at p is (1, —1, —1). The tangent line of
the curve at p is given by the parametric straight line

1,1,0
LL—LQ%—UW—lf—Dt, teR.

V2

Alternatively, we could use y as the parameter. Then by differentiating the equations in
Yy, we get

20y + 2y + 222y =0
Ty — 1+ 2z, =0,

which is solved to get (—1,1,1). The tangent line is now described as

(1,1,0)
V2

Despite there is a change in the direction in the parametric form, it is the same geometric
curve as the first one.

+(-L,1,1)t, teR.

Example 6.10. Consider

?+yP+(z—-1)?% =1
?+yP+(z-2)?% =4.
Geometrically it is clear that the solution set consists of a single point {(0,0,0)}. The

gradients of these functions are (2z,2y,2(z — 1)) and (2z, 2y, 2(z — 2)) which are linearly
dependent at (0,0,0), and

00 —2
M‘ko-@

It shows that the rank 2 condition in Theorem 6.5 cannot be removed. On the other

hand, consider
-y =0
4> —y =0,

as a system in R3. The zero set of the first equation is given by (z,z?, 2) and the second
(z,42%, 2). Hence the zero set of this system is given by (0,0, z), 2 € R which is the z-axis.
However,

0 —1 0
M= [0 -1 0}

is of rank 1 only. It shows that the rank 2 condition is sufficient but not necessary.
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6.4 The Implicit Function Theorem

We are ready to generalize the results in the previous two sections. Let fi, fo, -+, fin, 1 <
m < n — 1, be differentiable functions in some open set in R™. Suppose p is a point in the
set

Z={xeG: fj(x)=0,5=1,2,--- ,m} CR".

We would like to investigate if the zero set is an “m-surface” passing p. When m = 1 and
n > 4, it is a hypersurface. When m =n —2 and n > 3, it is a surface. When m =n —1,
it is a curve. Let

oOfh 0fi
81‘1 8xn
Ofm . 0fm
0y oz,

The implicit function theorem gives a criterion to this question.

Theorem 6.7 (Implicit Function Theorem). Let fi,--- | f., be differentiable functions
i some open G of R™ where 1 < m < n — 1. Let Z be defined as above and p =
(21, ,2n) € Z. Assume that V f;(p) are linearly independent, that is, M is of rank m.
Without loss of generality let the last m x m-submatrix of M be non-singular. There exist

a cube C centered at p inside G and m many differentiable functions o1, , ©m from C'
to C" satisfying ©1(2') = Zn—mi1, -+, pm(2’) = 2, such that the set

{(@" or(a’), - om(a)) : 2" € C}
coincides with {x € C': fj(z) =0, j=1,---,m}, where x = (2',2") and

C=0C"xC"CR"™xR™.
Example 6.11. Consider

2% — cosy + w? =0
r4+aw+y?—logw+z =2.

Does it define a surface in R* near (0,0,2,1)? The matrix M is given by

M- 2¢  siny O 2w 100 0 2
T ll4tw 2 1 o z—wl| |2 01 —1]°

at (0,0,2,1). According to the Implicit Function Theorem, there are differentiable func-
tions z = ¢(x,y), w = ¥ (z,y) defined near (0,0, 1,2) so that the surface locally coincides

with the graph {(x,y, p(z,v),¥(z,y))}.
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We conclude by reformulating the Implicit Function Theorem in a form that is usually
stated.

Let F be a differentiable from some open G C R™ to R™. For F = (fi, fo, ", fm),
its Jacobian matrix VF is given by

oh Of
0xy ox,,
Ofm .. 0fm
0xy ox,,

Now the Implicit Function Theorem becomes

Theorem 6.7’ (Implicit Function Theorem) Let F' be a differentiable function in
some open G CR™ toR™, 1 <m <n—1. Let Z = F~!(c) for somece F(G) andp € Z.
Assume the Jacobian matriz of F' at p has rank m. Without loss of generality let the last
m x m-submatriz of VF(p) be non-singular. There exist a cube C' centered at p inside G
and a differentiable function ® from C' to C" such that the set

{(2/,®(2)): 2/ e’}

coincides with Z N C.

6.5 Local Change of Coordinates™

In Section 5.3 changes of variables were applied to transform partial differentiable func-
tions. Functions in the old variables are converted to functions in the new variables.
One may wonder whether this procedure could be reversed so that functions in the new
variables can be converted back to functions in the old variables. When this happens, we
may call such change of variables a change of coordinates. To answer this question we
need some preparation.

First of all, the most general Chain Rule.

Theorem 6.8 (Chain Rule III). Let G C R™" and D C R™ be open, F : G — R™ and
H : D — RP be differentiable and F(G) C D. Then H o F is differentiable in G and

V(Ho F)(x)=VH(F(z))VF(z), VreG.

Proof. Let
F:(f17f2a"'7fm)7 H:(hlah27"'7hp)'
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For each i = 1,--- ,p, apply the Chain Rule II to h;(F(x)) = h;(fi(z), f2(c), - -, fm(2))
to get

8hz ol afk .
—1...-
axj Z ayk axj( ) J ) y 1
which is the desired result after putting in matrix form. ]

Next, we give a necessary condition for a differentiable map to have an inverse.

Proposition 6.9. Let F': G C R" — R™ be differentiable. Suppose it admits a differen-
tiable inverse H : F(G) C R™ — G. Then m =n and

[ =VH(F(x)VF(z), z€G. (6.1)

Proof. Formula (6.1) follows from differentiating the relation x = H(F(z)) by the Chain
Rule. It remains to show n = m. Assuming n > m, the matrix VF maps R" to R™, so
the subspace formed by its image has dimension k£ < m. As a result, the image of the
product matrix VHVF has dimension j < k < m. However, when F' is invertible, (6.1)
shows that VHVF' is the identity whose image has dimension n. Fromn =7 <k <m
we conclude that n = m. When n < m, we just have to exchange the role of F' and H to
arrive at the same conclusion. O]

(6.1) implies that the Jacobian matrix of an invertible map must be non-singular. This
gives a necessary condition for invertibility. The inverse function theorem shows that this
condition is also sufficient in a local sense.

Theorem 6.10 (Inverse Function Theorem). Let F' be a differentiable function in
some open G C R™ to R™ satisfying F(p) = q. Suppose that its Jacobian matriz is
nonsingular at p. There is some ball B containing p in which F' is bijective. Furthermore,
the image F(B) is open and the inverse of F' is a differentiable function from F(B) to B.

The inverse of F' exists in a conceivably much smaller set B other than GG, and this is
why we call it admits a local inverse. Whether the inverse exists in the whole G must be
analysed case by case. The Inverse Function Theorem can be regarded as the m = n case
of the Implicit Function Theorem.

In general, let G and D be two open sets in R" and F' is a differentiable map from
G to D with a differentiable inverse. For any function f defined in D, the function
f(x) = f(F(x)) becomes a function in G. Conversely, a function g defined in D there
associates a function g(y) = g(F~'(y)) in D. We call this a change of coordinates. In
the following we examine the polar coordinates. The conversion between the rectangular
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coordinates and polar coordinates is one of the most common changes of coordinates.

Let F: [0,00) x R — R? be given by
F(r,0) = (rcos,rsind) .

The Jacobian matrix is

VF [ cos sin@}

—rsinf rcosf

and its Jacobian determinant is equal to r. By Inverse Function Theorem, F' has a local
inverse at every point except (0,6),0 € R . Indeed, for any point (z,y), F~!(z,y) is not a
single point but the infinite set

{(r,@—l—er): r=+/22+y?, x=rcosf,y=rsind,0 € [0,27),n € Z },

where arctany/x is the branch of the inverse tangent in [0, 2xr]. Thus F' is never a global
inverse map. To obtain an inverse one way is to restrict the domain of F'. For instance, F
becomes a bijective map on (0, 00) x [0, 27) and now its image is R?* minus the origin. Or
one can take (0,00) x [nm, (n+2)7),n € Z, instead of (0,00) x [0,27). One uneasy thing
is that the domain is not an open set. To make it open one further restricts the map to
(0,00) x (0,27) but then the image is R? minus the semi-infinite z-axis (z,0),z > 0. Life
is not perfect. Luckily local changes of coordinates are sufficient for many purposes.

Comments on Chapter 6

The Implicit Function Theorem is used to verify whether a zero set is a curve, a surface,
a hypersurface or an m-surface locally. It is a cornerstone of differential geometry and
analysis. Its proof is harder and will be postponed to MATH3060. After going through
this chapter, you are supposed to know:

e The concept of a surface and a curve in R3 with those examples illustrating the
necessity of various assumptions in Theorems 6.2 and 6.5.

e Finding the tangent planes of surfaces and tangent lines of curves.

e The technique of implicit differentiation.

This theorem will be applied to constrained extremal problems in the next chapter.
Supplementary Readings

6.1 4.5 and 4.6 in [Au]. Chapters 16 and 17 in [Fitz].



